

Fractals

Creating complex and interesting shapes from code

Most famous fractal: Mandelbrot set

What is it, more than a pretty image?

Natural objects have fractal features

Classic example: Coastline

Shape and length varies with resolution

es

Classic example 2: Bracken

Self-similar, variable scale

Fractals in computer graphics

Fractals are shapes with:

self-similarityinfinite resolution

Used for modelling such shapes

Classification of fractals

- geometrical recursive construction
 - stochastic fractals
- mathematical formulas (in the complex plane)

Geometric construction of selfsimilar fractals

Example: Koch curve

Fractal dimension

A measure of how rough or fragmented the shape is **Definition:**

$ns^{D} = 1$

n = number of subparts s = scalingD = fractal dimensionSolves to $D = \ln(n) / \ln(1/s)$

Fractal dimension example: Koch curve n = 4s = 1/3

$$D = \ln 4 / \ln 3 = 1.26$$

Fractal dimension example: Splitting a line and moving midpoint

Fractal dimension:

In 2D:

1 to 2: Well-behaved fractal curve

>2: Self-intersecting, area-covering

Split line: D = 1 minimum, no fractal Koch: D = 1.26, moderate fractal Moved midpoint: D = 2, maximum

Interpretation of fractal dimension: In 3D:

2 to 3: Well-behaved fractal surface

>3: Self-intersecting, volume-covering

ace

Statistically self-similar fractals

Random variation of generator

Same branch generator as before, with some randomness!

68(79)

Example: Generation of plants #2

Related methods:

Shape grammars and procedural methods

No unlimited resolution

Different rules at different levels

Example: Tree with leaves: replace last iteration with leaf generator

"graftals"

Self-squaring fractals

Based on simple functions in complex space

Insert complex numbers (points) into a function

Apply function recursively, and analyze the behaviour.

- Diverge?
- Converge?
 - Chaotic?

Converge or chaotic: Does it keep within some limit in a number of iterations?

Self-squaring fractals The Julia set

$$z_{k+1} = z_k^2 + \lambda$$

The Julia set - Implementation

```
for y = miny to maxy
for x = minx to maxx
(zr, zi) = scaling of (x,y)
```

for i = 0 to maxiterations $z = z^2 + \lambda$ if |z| > R then Leave

Draw pixel (x,y) (different colors for different i)

maxiterations ≈ 15 enough for decent result. R² ≈ 10

$f_{x} = (0.4, 0)$

Other Julia sets

 $z_{k+1} = z_k^2 + \lambda$

Other λ values

 $\lambda = (-1.3, 0)$

Self-squaring fractals The Mandelbrot

$$z_{k+1} = z_k^2 + z_0$$

3D fractals

Mandelbulb. Based on polar coordinates rather than complex numbers.

Mandelbulb

Several different variations. Amazing surrealistic scenes! Some potentially useful - but you will rather adapt yourself to the fractal than the fractal to you needs.

Many other 3D fractals exist.

Beautiful

- Non-predictable
- Limited usability

maxIterations: 12

outerBound: 12.50

lr: 0.30 li: 0.50

Mathematical curiosity

Fractals, summary

1) Geometrically constructed fractals

Very useful for generating many kinds of natural objects

Allows design of complex models with arbitrary resolution

2) Self-squaring fractals (and other adventures in the complex plane)

Questionable practical usability

Hard to do planned designing